Durfee-type inequality for complete intersection surface singularities
نویسندگان
چکیده
We prove that the signature of Milnor fiber smoothings a $2$-dimensional isolated complete intersection singularity does not exceed negative number determined by geometric genus, embedding dimension and irreducible components exceptional set minimal resolution, which implies Durfee's weak conjecture partial answer to Kerner--N\'emethi's conjecture.
منابع مشابه
Complete Intersection Singularities of Splice Type as Universal Abelian Covers
It has long been known that every quasi-homogeneous normal complex surface singularity with Q–homology sphere link has universal abelian cover a Brieskorn complete intersection singularity. We describe a broad generalization: First, one has a class of complete intersection normal complex surface singularities called “splice type singularities,” which generalize Brieskorn complete intersections....
متن کاملRigid and Complete Intersection Lagrangian Singularities
In this article we prove a rigidity theorem for lagrangian singularities by studying the local cohomology of the lagrangian de Rham complex that was introduced in [SvS03]. The result can be applied to show the rigidity of all open swallowtails of dimension ≥ 2. In the case of lagrangian complete intersection singularities the lagrangian de Rham complex turns out to be perverse. We also show tha...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولComplete Restrictions of the Intersection Type Discipline
In this paper the intersection type discipline as defined in [Barendregt et al. ’83] is studied. We will present two different and independent complete restrictions of the intersection type discipline. The first restricted system, the strict type assignment system, is presented in section two. Its major feature is the absence of the derivation rule (≤) and it is based on a set of strict types. ...
متن کاملA Complete Characterization of the Complete Intersection-Type Theories
We characterize those intersection-type theories which yield complete intersection-type assignment systems for λ-calculi, with respect to the three canonical set-theoretical semantics for intersectiontypes: the inference semantics, the simple semantics and the F-semantics. These semantics arise by taking as interpretation of types subsets of applicative structures, as interpretation of the inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Duke Mathematical Journal
سال: 2021
ISSN: ['1547-7398', '0012-7094']
DOI: https://doi.org/10.1215/00127094-2020-0047